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Abstract. Monte Carlo simulations of a system of point charges occupying 2 fraction of a
random array of sites in two and three dimensions are reported. We focus on the Coulomb-
interaction-driven ordering phenomena in the system. The model corresponds directly to the
details of physics of charges of partially filled resonant impurities in 2 semiconductor, but
qualitative results are of wider significance. Spatial correlations of charges, due to long-range
repulsive interactions between them, are studied as a function of temperature by means of pair
cormrelation functions and one-particle density of states. The presence of inherent disorder of the
allowed positions of the impurity charges is found to influence the ordering process, leading
10 a sawrarion of correlation range at low temperatures. Such behavioor is mot observed in
a pseudo-liquid model also studied for the sake of comparison. Within the latter model the
charges are assumed to have the same densities, and interactions to have the same strength, but
instead of being restricted to a random array of sites the charges are allowed to take any position.
Comparison of the two models allows us to introduce a phenomenclogical effective temperature,
which includes the effecis of the built-in disorder on the same footing as the thermal disorder.
The formation of the Coulomb gap in the demsity of states is discussed and its relation to the
Madelung gap in crystalline materials pointed out.

1. Introduction

This paper presents results of Monte Carlo (MC) studies of spatial ordering phenomena in a
system of point charges occupying a fraction of a random array of fixed sites. A repulsive
interaction between the charges leads to correlations between their positions. Namely, the
charges tend to arrange themselves as far away from each other as possible, within the limits
imposed by the availability of sites. The degree of ordering due to the interaction depends
on many properties of the system: temperature, charge density, strength of the interaction,
screening length, etc. We discuss the influence of the built-in disorder on correlations in
the system. The problem of a co-existence of an inherent disorder and the correlations
stemming from Coulombic interactions is of importance not only in materials with charged
impurities (upon which the present paper focuses its attention) but also in a wider class of
semiconducting systemns, e.g. those displaying integer and fractional quantum Hall effect.
Such an influence has been previously studied and discussed in the case of charge density
waves on a random alloy and flux lines in high-temperature superconductors [1].

The fact that positions of the charges are restricted to a randomly distributed and fixed
set of sites and the absence of kinetic energy distinguishes our study from previous studies
of ordering in electron gas {241, liquids and colloidal suspensions [5-131, Qur system
describes an example of the interplay between thermal and buiit-in disorder, namely spatial
correlations of charges in an incompletely filled system of impurities resonant with the
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conduction band in semiconductors, in both two- and three-dimensional geometries. The
electrons that occupy the impurities (donors, to be more specific) can hop from one site to the
other and, in such a fashion, lower the energy of the entire system. The qualitative results,
however, should have a wider significance. The correlations in the described system have
been studied previously mainly in the zero-temperature regime, and for a three-dimensional
situation [16—-19], using analytical models and the zero-temperature MC formalism, Results
describing the temperature dependence of the correlations have been rather limited [20,21].

The three- and two-dimensional systems studied here correspond, in our example, to
bulk semiconductors and planar- (or &-) doped semiconducting structures, respectively. We
describe of the temperature dependence of the pair distribution function, g(R), density of
states (DOS); we also discuss the formation of the so-called Coulomb gap [2] and its close
relation to the Madelung gap in crystalline structures. It is possible to trace the influence
of the randomness of the distribution of available sites—stemming from the fact that the
impurities replace atoms of the host semiconductor lattice in a random fashion (we call this
type of randomness in the system ‘the positiona! disorder’}—on the ordering of charges
located on them and to compare it with the influence of thermal fluctuations. To single out
the effects due to the positional disorder we compare our system with its *pseudo-liquid’
counterpart in which the charges interacting by means of the same poiential and having
no Kinetic energy are allowed to assume arbitrary positions. The pseudo-liquid model may
also be looked upon as a limiting case of the random impurity model, with the density of
available sites diverging to infinity with the density of charges kept constant. By comparing
the two models we were able to understand the limitations imposed on the ordering process
by the positional disorder and introduce a simple phenomenciogical description of a joint
effect of both the positional and thermal disorder.

2. The model and method of calculation

In this work we consider a random array of fixed sites (either in 3D space or on a 2D
plane). We assume that some of these sites may be electrically charged. The ratio of the
charged-sites density to the total-site density, which will be called the occupation fraction,
[, plays a crucial role in the studied phenomena. The total charge neutrality is preserved by
the presence of a continuous charge of opposite sign, corresponding to a conduction-band
electron gas in the host semiconductor or a 2D electron layer near the 5-doping plane. This
cloud of conduction electrons is uniformly spread out and does not introduce any additional
disorder into the system. This choice distinguishes our work from previous studies of
correlations in compensated semiconductors, where the charge neutrality is provided by
doping with both donors and acceptors [2,3,22,23). In such a case, the neutralizing charge
is localized on randomly distributed acceptors, thus being a source of another randomness
in the system. In our case, in addition to providing the charge neutrality, the electrons
screen the Coulomb interaction between the impurity charges. The exact description of the
screening is quite difficult, particularly in the case of quasi-2D electron layers [24]. We have
used instead a Yukawa approximation both in the 3p and 2D situation:

21
Vo) = e (—i) M

with £ being the dielectric constant of the semiconductor host and A representing the
screening radius, which in the majority of cases presented in this paper will be assumed to
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be a constant quantity. Numerical values of these two parameters employed in this paper
were intended to render the real situation in HgSe doped with Fe resonant donors (3D case)
or in 4-doped GaAs: two systems where experimental data conceming spatial correlations
of the impurity charges are available. Namely, we have used ¢ = 12.4 in 2D simulations
and ¢ = 20. The relative insensitivity of the results on the actual value of the screening
length A was already noted in [25]. We checked in our study that this, admittedly somewhat
surprising fact, does occur. Therefore, we decided to omit in the majority of this work any
dependence of A on, for example, the density of conduction electrons, i.e. on the number
of charged impurity sites. The simple form of (1) allows us to focus attention on the
physics of correlations, and not on the complications due to the exact form of the potential.
Furthermore, the use of a simpie form of screening also allows comparisons with resuits
obtained for Yukawa liquids and colloidal suspensions [10-14]. We have used numerical
values of the screening length A close to those given by Thomas—Femmi theory for the
appropriate materials (for the 2D systems we have used, as an approximation, an average
spatial density of electrons in a quasi-2D layer). Unless otherwise indicated, the value used
for 2D systems is A% = 50A, and for the 3D systems 4’2 = 65A.

We have studied the ordering phenomena using standard Monte Carlo tech-
niques [26,27]). We used models with up to 2000 sites, with a cubic or square geometry
and periodic boundary conditions. We have used the minimal-image convention, in which
a given charge interacts only with nearest copies of other charges. This is a natural method
for systems where the screening length is much smaller than the size of the unit cell used in
simulations. We have added the contribution of averaged interactions with charges outside
the directly considered volume. This additional term changed the absolute values of the site
energies, but did not influence the ordering. _

The pseudo-liquid model consisted of charged centres which during the simulations
were allowed to change positions arbitrarily, starting from an initial random distribution.
The final point of a jump has been chosen randomly from within a sphere around the
starting point. The radius of the sphere has been chosen approximately equal to the mean
separation of charges. The density of charges and the interaction between them remained
the same as in the random impurity model. In the ideal case, at low temperatures the
pseudo-liquid system should crystallize and form a lattice. In the 2D case the lattice is
triangular, whereas in the 3D case it is either BCC or FCC, depending on the ratio of the
distance between charges and screening length [10]. In practice, due to relatively fast
guench rates imposed by computational resources, only the transition to the glassy state has
been observed, as indicated, for example, by splitting of the second neighbour peak in the
pair correlation function g(R) (see figure 4). It should be noted here that the results of
the pseudo-liquid model are far from exhaustive, and are used only as a reference point to
determine the influence of a random distribution of the available positions in the impurity
model on ordering phenomena. '

3. Results ‘

We present various results of the Monte Carlo simulations which offer different measures
of the ordering phenomena in the system. For example, we show results conceming the
pair correlation function, one-particle density of impurity states and its second moment.
All the presented quantities indicate that below a certain temperature (dependent on model
parameters like screening length and occupation fraction) correlations in the random impurity
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model become frozen, with a certain amount of residual disorder. The comparative pseudo-
liquid model shows no such behaviour until much lower temperatures, and the degree of
ordering is much higher there.

All the results for the 2D case are presented for a sheet doping density of 101 cm™?
(typicai for the &-doping layers). In the 3D case the assumed doping density is 1.5 x
10" cm™>. The later value is chosen to correspond to experimental situation where the
effects of comrelations are found to be the strongest in HgSe doped with Fe [28,29].
Moreover, despite the difference in dimensionality, the azbove choice of densities leads to
similar length scales in 2D and 3D systems with the same occupation fractions.

3.1. Pair correlation function

Figure 1 presents examples of the pair correlation function g(R) for 2D and 3D systems at
an occupation fraction f = 0.3. The general features of the pair correlation funciion may
be described as follows.
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Figure 1. Examples of the pair correlation

functions for an occupation fraction f =

0.3 and various temperatures. (@) Two-

1 20 30 40 50 60 70 80 9o loo  dimensional system; (b) three-dimensional
R [A] system,

For high occupation fractions or high temperatures g{R) resembles roughly a step-like
function: g{R) = 0 for R < R, g(R) = 1 for R 2 R., used in the analytical short-
range correlation model [16, 19]. This behaviour is due to strong repulsion between charges
located on close pairs (see, for example, [6]). High temperatures, or a small number of
available neutral sites, do not allow ordering beyond the nearest neighbourhood,

At Jow temperatures and low occupation fractions f, a significant deviation from the
short-range model appears, in the form of well resolved maxima and minima in g(R),
cotresponding to consecutive neighbour shells. The presence of medium- and long-range
order in a system with a soft (i.e. not hard core) and purely repulsive potential has been
widely studied before (see, for example, {13], and references therein), and the finid—solid
transition for repulsive forces is known as the Kirkwood—-Alder transition.

For a given f, the structure in g(R) at first increases with decreasing temperature, which
signifies ordering of the system, and then saturates below a certain temperature 75(f),
depending on the occupation fraction value and screening constant A. Figure 2 presents
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Figure 2. Temperature dependence of the height of the
first neighbour peak gmax in the pair correlation function
for a zp system. Filled symbols represent results of
mc simulations for the random impurity model, empty
symbols are for the pseudo-liquid model, Muliple
points for given temperatures that correspond to runs
of the MC simulation differing in cooling rate and
sample size, The inset shows details of gpa. for a

5287

Figure 3. Temperature dependence of the height of the
first neighbour peak gmay in the pair cotrelation function
for a 3D system. Filled symbols represent resuits of
MC simulations for the random impurity modei, empty
symbols are for the pseudo-liquid model. The inset
shows details of gmax for a random impurity system in
the low-lemperature limit, with saturation temperatures
matked by arrows.

random impurity system in the tow-temperature limit,
with satueation (emperatures marked by arrows.

the temperature dependence of the first neighbour peak of g{R), gmax, as a function of the
temperature for three occupation fractions f = 0.2,0.3, 0.4 in the 2D case. A similar result
for the 3D case is shown in figure 3. The saturation temperature seems to be better defined
in the case of 2D systems, with a more rounded shape for 3D systems. The saturation values
of gmax are higher for lower occupation fractions. At the same time, the saturation itself
takes place at lower temperatures Tg(f). This reflects the fact that for lower occupation
fractions more neutral sites are available, and the system is able to achieve better ordering.

The pseudo-liquid model also shows an enhancement of the structure in g(R) with a
decreasing temperature, For temperatures above Ts(f) the random impurity and the pseudo-
liquid model give similar results. Below Tg{f), on the other hand, there is a large difference
between the resulis given by the two models. Whereas the ordering process in the random
impurity model seems to come to a stop, in the pseudo-liquid model it continues until very
low temperatures,

The difference is particularly clear when one compares the corresponding pair correlation
functions and actual charge distributions for the random impurity and pseudo-liquid models
at T = 0. Figure 4 presents such a comparison for the 2D system, where visualization is
easier. In the random impurity model the only ordering visible is a correlation of spatial
separation between charges (figure 4(c)). On the other hand, in the pseudo-liquid model
one can clearly define regions with orientational order (figure 4(4)). This results in a much
more pronounced structure in g(R) for the pseudo-liquid model (figure 4(b)), with splitting
of the second neighbour peak, characteristic for long-range ordering.

The values of the saturation temperatures depend on the assummed screening length,
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Figure 4, Comparison of pair comelation functions for the random impurity and pseudo-
liquid models of the 20 system at occupation fraction f = 0.2, and T & 0. (@) g(R) for
the random impurity model. (&) g(R) for the pseudo-liquid model. (¢) Example of spatial
charge distribution for the random impurity modet inside 2 1000 A x 1000 A square. (Most of
charged impurities contained in the simulated system are not shown in the figure). (&) Example
of spatial charge distribution for the pseudo-liquid mode! inside a 1000A x 1000A square,
{Most of the charged impurities contained in the simnulated system are not shown in the figure.)
Long-range orientational ordering, clearty visible in the pseudo-liquid model (where the charges
may assume arbitrary positions during the simulations) is absent in the random impurity model,
in which charges are restricted to a randomly distributed set of sites. The splitting of the second

peak in the g(R) for the pseudo-liquid model is one of the characteristic features of glass
formation [14].

diminishing with decreasing A. However, in the random impurity system, at T = 0, the
shape of g(R) and the gm.x value do not change over a wide range of A values, from A
much smaller than the mean separation between the charges (see figure 5). Only for very
small values of A have we observed a change in g(R). This deviation requires further study,
the results of which will be published elsewhere.

The importance of the pair correlation function results from the fact that g(R) is directly
related to the structure factor S(g), determining the scattering rate from ionized impurity
scattering. Enhancement of correlations with decreasing temperature leads to an increase
of electron mobility. Thus, the saturation of the ordering, expressed by freezing of g(R)
below Ts(f) leads to a halt of the increase of the mobility with decreasing T. Possibly
this fact is related to a saturation of mobility in HgSe:Fe at low temperatures observed by
Lenard and co-workers {30, 31T and Pool and co-workers [28,29].

3.2. Density of states

The pair correlation function gives a rather limited view of the ordering phenomena—
there exist higher-order correlation functions which contain more information. Still another
method of quantification of the amount of disorder in a system is through a study of
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" the energy distribution, given by the density of states (DOS). This quantity, frequently
used in the physics of semiconductors, is seldom used in studies of liquids and colloids,
aithough it offers interesting insights into many phenomena. The single-particle DOS allows
a description of the mean value and fluctuations of the energy of particles.

Computer simulations offer a simple and direct way of describing the energy distribution
in the simulated system. One can simply record values of the electrostatic potential at lattice
sites, due to all charges except the one located at the given site. In the case of a charged
site this corresponds simply to the electrostatic energy of the charge. In the case of a
neutral site, this gives the energy of a test charge located on the site. In this sense one can
speak of energies of charged and empty sites. The above approach can be extended to the
pseudo-liquid model, only the energy distribution of neutral sites is replaced by continuuin
of energies of test charges at all unoccupied points in space. In our work we will study the
dispersion of site energies and relation of energies of charged and neutral sites. A typical
example of the energy distribution of various species of impurity site is presented in figure 6,
which shows all important aspects of the density of states of the systems under study here.

3.2.1. Broadening of the density of states. As can be seen in figure 6 the distribution
of energies of charged sites has a roughly Gaussian shape, becoming asymmetrical with
an increasing temperature. Further examples of DOS are presented in figures 7 and 8.
In this section we shall concentrate on the second moment of the energy distribution of
charged sites, o2(f, T) = (E — E(f, T))?, where the bar denotes averaging with respect to
energy. Figures 9 and 10 present the behaviour of ¢2(f, T} for various occupation fractions
and temperatures, for the 2D and 3D case, respectively. Results for the random impurity
model (filled symbols) show a similar type of behaviour as the pair comelation function:
with decreasing temperature, o at first decreases and then saturates below temperatures
approximately equal to the values of T5(f) obtained from the study of pair correlation
funcrions. One can also observe that here, as in the analysis of g,.:(T), the saturation
temperatures are easier to define in the 2D systems. In the pseudo-liquid model there is no
saturation, except at extremely low temperatures when, in some cases, a transition to the
glass phase has been observed. Instead, the dispersion o2 decreases approximately linearly
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Figure 6. Comparison of density of states for a 2b random impurity
and pseudo-liquid systems. Light gray area: bos of charged sites in
the random impurity system. Dark pray area: pos of charged sites
for the pseudo-liquid model. Full curve: pos of neutral sites in
the random impurity model; dotted curve: pos for the continuum
of neutral sites for the pseudo-liquid model. The thick full curve
represents the perfect crystalline arrangement of charges. The pos
of neutral sites for the pseudo-liquid model and crystal (which are
not properly normalized} are scaled to become comparable with
the random impurity model. Ecyq is the energy of lattice sites in
2 crystalline amrzy with the same charge density, Emagelung 15 the
value of the Madelung gap in the crystal. One can note that at low
temperatures the shape of the pos for the random impurity model
does not change, whereas in the pseado-liquid model a finite region
80 90 of energies with DOs = O develops. At higher temperatures both
models give similar results.
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Figure 7. Total density of states (summed Dos of
charged and neutral sites) for the 30 random impurity
model. The small but non-zero value at T = ) is due to
averaging between different realizations of the system.
The inset shows the dependence of the minimal value of
the pos at the centre of the Coulomb gap as a function
of temperature, Occupation fraction f = 0.2,
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Figure 8. The same as figure 7, but for a 2o random
impurity model with f =0.2.

with decreasing temperature (open symbols in figures 9 and 10).
To analyse the temperature dependence of o2 in a more quantitative way we have fitted
a simple empirical formula to the results of the random impurity model:

o(f, T) = og(f )/ T + TE(f) 2)

interpreting To(f) as a thermal measure of the effects due to positional disorder. Taking
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Figure 9. Second moment of the energy dis-
tribution for 2D systems of various occupa-
tion fractions as a function of temperatore.
Diamonds; f = 0.4; squares: f = 0.3
circles: f = 0.2. Filled symbols: random
impurity model; open symbols: equivalent
psendo-liquid model. The inset shows the
details at low temperatures, The full curves

are the results of the fit 02 = o2,/ T2 + T
to the random impurity MC simulations re-
sults. Dotted curves, coinciding -very well
the results of the pseudo-liquid model, cor-
respond to the linear function o2 = T
with the same oy as in the corresponding

¢ 0 20 3 T [[fa 50 6 10 random impurity models. The inset shows

the details in the low-ternperature region.
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o8 . R Figure 10. The same as in figure 9, but
0 5 10 15 20 25 30 35 40 45 for 3D systems. Squares: f = 0.3; circles:

T[K] F=02

into account numerical errors, the above formula describes remarkably well the results of
MC simulations in both 2D and 3D cases (the full curves in figures 9 and 10). Comparing the
values of Tp{ f) with the corresponding approximate saturation temperatures 75 f) obtained
from the study of gmax show that both quantities are indeed closely related: see table 1.

Table 1. Comparison of Tp{ f) and T5(f).

2D case 3D case
f 02 03 - 04 02 03

Ts(fy 7+2 163 2745 4+2  8+3
Tolf) 36 17.0 30.2 52 7.8
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The above interpretation of Ty(f) is in accord with the analysis of the results found
for the pseudo-liquid system: using the values of oZ(f) derived from the random impurity
model, and putting To(f) = 0 we have obtained simple linear functions o2(f, T) = ag (AT
(the broken curves in figures 9 and 10). It may be seen that this simpie approach provides
a pood description of the properties of the pseudo-liquid system in all cases studied (open
symbols in figures 9 and 10). This allows us to describe positional disorder using thermal
measures, for example, introducing an effective temperature T* = /T2 + T(f)%. In other
words, Ty itself is a measure of the positional disorder alone.

The possibility of expressing at least some of the effects of positional disorder in a
random impurity model is especially important in the light of recent attempts 1o describe
temperature and doping concentration dependence of mobility in HgSe doped with iron using
a formalism from liquid state theory [32, 33]. As indicated by our work, direct application
of liquid-like models seems to be an oversimplification, especially at low temperatures.
However, using the effective temperature T* could Jead to a more realistic description of
the system.

Let us note here that the positional disorder in the sense used in this work is completely
different from the ‘internal disorder”, i.e. the scatter of the impurity site energies introduced,
for instance, in [2]. In our models the energies of the impurities without interactions are all
the same.

3.2.2. A gap in the density of states. A comparison of the distribution of potential energies
of charged and neutral sites such as presented in figure 6 reveals another striking feature
due to interaction between charges: the so-called Coulomb gap [2-4,22,23,34]. The name
describes a pronounced drop in the total one-particle DOS (i.e. the summed DOS of neutral
and charged sites) found at low temperatures, separating the energies of charged and neutral
sites {figures 6-8). The Coulomb gap has been initially found in numerical studies of
highly doped semiconductors with intemal disorder [2, 22, 23]. Recently, Efros [4] studied
the formation and temperature dependence of the Coulomb gap in a system of point charges
without external disorder (corresponding to our pseudo-liquid model with Coulomb instead
of Yukawa interactions).

In this work we propose a unifying picture describing the behaviour of the DOs in a
system of point charges, valid for a whole range of systems, starting from perfect crystals
and ending with a totally random distribution of charges. We argue that the formation of a
gap in the density of states, separating energies of charged and neutral sites, is due to the
presence of spatial ordering imposed by electrostatic repulsion of the charges and that it
appears even for relatively short-range potentials (with the screening length of the order of
the inter-impurity separations.

Let us consider first a perfect lattice of charges. All of them have the same energy,
Eeryst» thus the DOS of the charged sites is a Dirac delta function. On the other hand, a test
charge located at any point except for the lattice sites has a higher potential energy. In fact,
there is a finite difference between the energy of lattice (charged) sites and the lowest energy
of non-lattice (neutral) sites. This difference may be named the Madelung gap, Emadeiung
(see figure 6(a)).

An increase of the temperature broadens the energy distribution of both charged and
neutral sites. The broadening is due to the movement of the position of the charges around
the lattice sites and to the formation of defects. The uppermost panel in figure 6 presents the
DOs of a supercooied 2D liquid (the dark gray area represents charged sites, the broken curve
the continuum of neutral sites). Although the energy distributions are broadened, there is
still a well defined region of energies where the DOS is equal to zero. For comparison, the
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DOS of the random impurity system is also shown.

A further increase of temperature gradually closes the finite gap in the density of states
for the pseudo-liquid model, and leads to a situation such as is presented in the middle panel
of figure 6. The DOS of the pseudo-liquid and the random impurity models become very
similar. The exact shape of the bOS depends not only on the dimensionality of the system,
as previously suggested, but also to the amount of disorder present. The process of gap-
filling continues with increasing temperature until finally, at sofficiently high temperatures,
the gap in the DOS disappears. Figures 7 and 8 present the detailed temperature dependence
of the DOS shape for a 2D and 3D random impurity system with f = 0.3. The insets show
that the temperature dependence of the minimal value of the DOS also shows 2 change in
behaviour at temperatures close to T5(f} or To(f). A small but finite value of the DOS at
the minimum for T = 0 is a result of averaging between various numerical realizations of
the systems, smearing the Fermi energy. For a system with ‘positional disorder’, having a
filling fraction f ~ 0.5 and at very low temperature, we expect o' to be of the order of the
Coulomb gap width since both quantities scale approximately with the interaction energy
characteristic for the first coordination distance. On the other hand, for f approaching zero
the dispersion o% drops while Coulomb gap becomes more pronounced.

We think that it is important to point out the close connection between the existence
and shape of the Coulomb gap in the density of states with the degree of spatial ordering
in the system. The ordering, in turn, is due to the repulsion between charges. The presence
of the built-in disorder, as in the random impurity system, may stop the transition from the
traditional Coulomb to Madelung gap at a certain point. The resulting shape of the DOS at
T =~ 0 thus depends, for exampie, on the ratio of the number of charges to the number of
available sites. ' *

4, Conclusions

We have studied a system of charges located on a random array of sites and interacting
through 2 Yukawa potential. In this system the spatial ordering of charges is blocked at
low temperatures by the presence of built-in underlying positional disorder. The ordering
process is described with the help of several physical quantities: pair correlation functions,
fluctuations of individual site energy, Coulomb gap formation in the density of states.
All studied examples, both two- and three-dimensional, show saturation of correlations
below a certain temperature, The value of the saturation temperature depends on the
occupation fraction, f, defined as the ratio of the charged-sites density to the total-site
density, screening length and dimensionality, although not very sensitively on the latter
two.  Lack of sensitivity to the screening length (determined mainly by the conduction
electron density} can be understood, remembering that for a spatially correlated impurity
system the important contribution to effective screening of the impurity potentials comes
from self-screening within the impurity system. A comparison of the results of the random
impurity model with a pseudo-liquid model {corresponding to the limiting case of f = 0
with constant charge density and screening length) allows us to emphasize the role of an
interplay between thermal disorder and positional disorder due to initial random distribution
of available sites. It has been possible to introduce an ‘empirical’ temperature Tp, describing
the effects of positional discrder. Tg roughly corresponds to temperatures below which there
is no further ordering with decreasing temperature.
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