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Abstract. Monte Carlo simulations of a system of point charges occupying a fraction of a 
random m y  of sites in [WO and three dimensions are reported. We focus on the Coulomb 
interaction-driven ordering phenomena in the system. The model corresponds directly to the 
details of physics of charges of parridly filled resonanl impurities in a semiconductor. but 
qualitative results are of wider significance. Spatial correlations of charges, due lo long-range 
repulsive interactions between them, are studied as a function of emperamre by means of pair 
correlation functions and one-particle density of stam. The presence of inherent disorder of the 
allowed positions of the impurity charges is found lo influence the ordering process, leading 
10 a saturation of correlation range at low tempratures. Such behaviour is not observed in 
a pseudo-liquid model also studied for the sake of comparison, Within the latter model the 
charges are assumed lo have the same densities, and interactions to have fhe same skength but 
instead of being restricted to a random array of sites the charges are allowed to take any position 
Compvsnn of the [WO models allows us IO introduce a phenomenological effective temperature, 
which includes the effects of the built-in disorder on the same footing as the thermal disorder. 
The formation of the Coulomb gap in the density of states is discussed and its relation lo the 
Madelung gap in crystalline materials pointed out. 

1. Introduction 

This paper presents results of Monte Carlo (MC) studies of spatial ordering phenomena in a 
system of point charges occupying a fraction of a random array of fixed sites. A repulsive 
interaction between the charges leads to correlations between their positions. Namely, the 
charges tend to anange themselves as far away from each other as possible, within the limits 
imposed by the availability of sites. The degree of ordering due to the interaction depends 
on many properties of the system: temperature, charge density, strength of the interaction, 
screening length, etc. We discuss the influence of the built-in disorder on correlations in 
the system. The problem of a co-existence of an inherent disorder and the correlations 
stemming from Coulombic interactions is of importance not only in materials with charged 
impurities (upon which the present paper focuses its attention) but also in a wider class of 
semiconducting systems, e.g. those displaying integer and fractional quantum Hall effect. 
Such an influence has been previously studied and discussed in the case of charge density 
waves on a random alloy and flux lines in high-temperature superconductors [ 11. 

The fact that positions of the charges are restricted to a randomly distributed and fixed 
set of sites and the absence of kinetic energy distinguishes our study from previous studies 
of ordering in electron gas [2-4], liquids and colloidal suspensions [SE]. Our system 
describes an example of the interplay between thermal and built-in disorder, namely spatial 
correlations of charges in an incompletely filled system of impurities resonant with the 
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conduction band in semiconductors, in both two- and three-dimensional geometries. The 
electrons that occupy the impurities (donors, to be more specific) can hop from one site to the 
other and. in such a fashion, lower the energy of the entire system. The qualitative results. 
however, should have a wider significance. The correlations in the described system have 
been studied previously mainly in the zero-temperature regime, and for a three-dimensional 
situation [16-19], using analytical models and the zero-temperature MC formalism. Results 
describing the temperature dependence of the correlations have been rather limited [ZO,2l]. 

The three- and two-dimensional systems studied here correspond in our example, to 
bulk semiconductors and planar- (or 6-) doped semiconducting structures, respectively. We 
describe of the temperature dependence of the pair distribution function, g ( R ) ,  density of 
states (DOS); we also discuss the formation of the so-called Coulomb gap [Z] and its close 
relation to the Madelung gap in crystalline structures. It is possible to trace the influence 
of the randomness of the distribution of available sitesstemming from the fact that the 
impurities replace atoms of the host semiconductor lattice in a random fashion (we call this 
type of randomness in the system ‘the positional disorder’hn the ordering of charges 
located on them and to compare it with the influence of thermal fluctuations. To single out 
the effects due to the positional disorder we compare our system with its ‘pseudo-liquid’ 
counterpart in which the charges interacting by means of the same potential and having 
no kinetic energy are allowed to assume arbitrary positions. The pseudo-liquid model may 
also be looked upon as a limiting case of the random impurity model, with the density of 
available sites diverging to infinity with the density of charges kept constant. By comparing 
the two models we were able to understand the limitations imposed on the ordering process 
by the positional disorder and introduce a simple phenomenological description of a joint 
effect of both the positional and thermal disorder. 

2. The model and method of calculation 

In this work we consider a random array of fixed sites (either in 3D space or on a 2D 
plane). We assume that some of these sites may be electrically charged. The ratio of the 
charged-sites density to the total-site density, which will be called the occupation fraction, 
f, plays a crucial role in the studied phenomena. The total charge neutrality is preserved by 
the presence of a continuous charge of opposite sign, corresponding to a conduction-band 
electron gas in the host semiconductor or a 2D electron layer near the &doping plane. This 
cloud of conduction electrons is uniformly spread out and does not introduce any additional 
disorder into the system. This choice distinguishes our work from previous studies of 
correlations in compensated semiconductors, where the charge neutrality is provided by 
doping with both donors and acceptors [2,3,22,23]. In such a case, the neutralizing charge 
is localized on randomly distributed acceptors, thus being a source of another randomness 
in the system. In our case, in addition to providing the charge neutrality, the electrons 
screen the Coulomb interaction between the impurity charges. The exact description of the 
screening is quite difficult, particularly in the case of quasi-ZD electron layers [24]. We have 
used instead a Yukawa approximation both in the 3D and ZD situation: 

EoE I‘ 

with E being the dielecmc constant of the semiconductor host and h representing the 
screening radius, which in the majority of cases presented in this paper will be assumed to 
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be a constant quantity. Numerical values of these two parameters employed in this paper 
were intended to render the real situation in HgSe doped with Fe resonant donors (3D case) 
or in 8-doped GAS:  two systems where experimental data concerning spatial correlations 
of the impurity charges are available. Namely, we have used E = 12.4 in ZD simulations 
and E = 20. The relative insensitivity of the results on the actual value of the screening 
length A was already noted in [25]. We checked in our study that this, admittedly somewhat 
surprising fact, does occur. Therefore, we decided to omit in the majority of this work any 
dependence of A on, for example, the density of conduction electrons, i.e. on the number 
of charged impurity sites. The simple form of (1) allows us to focus attention on the 
physics of correlations, and not on the complications due to the exact form of the potential. 
Furthermore, the use of a simple form of screening also allows comparisons with results 
obtained for Yukawa liquids and colloidal suspensions [lo-141. We have used numerical 
values of the screening length A close to those given by ThomasFermi theory for the 
appropriate materials (for the 2D systems we have used, as an approximation, an average 
spatial density of electrons in a qUaSi-ZD layer). Unless otherwise indicated, the value used 
for 2D systems is AZD = 50A, and for the 3D systems A3D = 65A. 

We have studied the ordering phenomena using standad Monte Carlo tech- 
niques [26,27]. We used models with up to 2000 sites, with a cubic or square geomev 
and periodic boundary conditions. We have used the minimal-image convention, in which 
a given charge interacts only with nearest copies of other charges. This is a natural method 
for systems where the screening length is much smaller than the size of the unit cell used in 
simulations. We have added the contribution of averaged interactions with charges outside 
the directly considered volume. This additional term changed the absolute values of the site 
energies, but did not influence the ordering. 

The pseudo-liquid model consisted of charged centres which during the simulations 
were allowed to change positions arbitrarily, starting from an initial random distribution. 
The final point of a jump has been chosen randomly from within a sphere around the 
starting point The radius of the sphere has been chosen approximately equal to the mean 
separation of charges. The density of charges and the interaction between them remained 
the same as in the random impurity model. In the ideal case, at low temperatures the 
pseudo-liquid system should crystallize and form a lattice. In the 2D case the lattice is 
triangular, whereas in the 3D case it is either BCC or FCC, depending on the ratio of the 
distance between charges and screening length [IO]. In practice, due to relatively fast 
quench rates imposed by computational resources, only the transition to the glassy state has 
been observed, as indicated, for example, by splitting of the second neighbour peak in the 
pair correlation function g(R) (see figure 4). It should be noted here that the results of 
the pseudo-liquid model are far from exhaustive, and are used only as a reference point to 
determine the influence of a random distribution of the available positions in the impurity 
model on ordering phenomena. 

3. Results 

We present various results of the Monte Carlo simulations which offer different measures 
of the ordering phenomena in the system. For example, we show results conceming the 
pair correlation function, one-particle density of impurity states and its second moment. 
All the presented quantities indicate that below a certain temperature (dependent on model 
parmeters like screening length and occupation fraction) correlations in the random impurity 
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model become frozen, with a certain amount of residual disorder. The comparative pseudo- 
liquid model shows no such behaviour until much lower temperatures, and the degree of 
ordering is much higher there. 

All the results for the 2D case are presented for a sheet doping density of lOI3 cm-' 
(typical for the &doping layers). In the 3D case the assumed doping density is 1.5 x 
IOt9  cmW3. The later value is chosen to correspond to experimental situation where the 
effects of correlations are found to be the strongest in HgSe doped with Fe [28,291. 
Moreover, despite the difference in dimensionality, the above choice of densities leads to 
similar length scales in 20 and 3D systems with the same occupation fractions. 

3.1. Pair correlation function 

Figure 1 presents examples of the pair correlation function g(R) for 2D and 3D systems at 
an occupation fraction f = 0.3. The general features of the pair correlation function may 
be described as follows. 

1 6 ,  

0.0 / /  

"." 
1.2 b 
1.0 

-0s 

h 0.6 

0.4 

0.2 

S '  
T=OK 
T=BK 
T=16K 
T=XK 
T=33K 

Figure 1. Examples of the pair correlation 
functions for an occupation fraction f = 
0.3 and various temperallureS. (a) WO- 

For high occupation fractions or high temperatures g ( R )  resembles roughly a step-like 
function: g ( R )  = 0 for R < R,, g ( R )  = 1 for R 2 R,, used in the analytical short- 
range correlation model [16,19]. This behaviour is due to strong repulsion between charges 
located on close pairs (see, for example, [6]). High temperatures, or a small number of 
available neutral sites, do not allow ordering beyond the nearest neighbourhood. 

At low temperatures and low occupation fractions f ,  a significant deviation from the 
short-range model appears, in the form of well resolved maxima and minima in g(R),  
corresponding to consecutive neighbour shells. The presence of medium- and long-range 
order in a system with a soft (i.e. not hard core) and purely repulsive potential has been 
widely studied before (see, for example, [13], and references therein), and the fluid-solid 
transition for repulsive forces is known as the Kirkwood-Alder transition. 

For a given f ,  the structure in g ( R )  at first increases with decreasing temperature, which 
signifies ordering of the system, and then saturates below a certain temperature Ts(f), 
depending on the occupation fraction value and screening constant A. Figure 2 presents 
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Figure 2. Temperature dependence of the height of the Fore 3. TemperaNE dependence of the height of the 
fin1 neighbour p a k  gmsr in the pair correlation function fimt neighbour peak g- in lhe pair correlation function 
for a 20 syskm. Filled symbols represent results of for a 30 system. Filled symbols represent results of 
MC simulations for thc random impuriry model. empty MC simulalions for the random impurity model, empty 
symbols are for the pseudoliquid model. Multiple symbols are for the pseudo-liquid model. The inset 
p in t s  for given IemperaNres that correspond to NM shows details of g,, for a random impurity system in 
of lhe MC simulation differing in cooling rate and the low-temperaNre limit, with saturation tempuatures 
sample size The i w t  shows details of g,,, for a marked by arrows. 
random impurity system in he low-temperature limit, 
with saturation temperaNres marked by arrows. 

the temperature dependence of the first neighbour peak of g ( R ) ,  g-, as a function of the 
temperature for three occupation fractions f = 0.2,0.3,0.4 in the ZD case. A similar result 
for the 3~ case is shown in figure 3. The saturation temperature seems to be better defined 
in the case of 2D systems, with a more rounded shape for 3D systems. The saturation Values 
of g,, are higher for lower occupation fractions. At the same time, the saturation itself 
takes place at lower temperatures Ts(f). This reflects the fact that for lower occupation 
fractions more neutral sites are available, and the system is able to achieve better ordering. 

The pseudo-liquid model also shows an enhancement of the structure in g ( R )  with a 
decreasing temperature. For temperatures above T s ( f )  the random impurity and the pseudo- 
liquid model give similar results. Below T s ( f ) ,  on the other hand. there is a large difference 
between the results given by the two models. Whereas the ordering process in the random 
impurity model seems to come to a stop, in the pseudo-liquid model it continues until very 
low temperatures. 

The difference is particularly clear when one compares the corresponding pair correlation 
functions and actual charge distributions for the random impurity and pseudo-liquid models 
at T Ft: 0. Figure 4 presents such a comparison for the XI system. where visualization is 
easier. In the random impurity model the only ordering visible is a correlation of spatial 
separation between charges (figure 4(c)). On the other hand, in the pseudo-liquid model 
one can clearly define regions with orientational order (figure 4(d)). This results in a much 
more pronounced structure in g ( R )  for the pseudo-liquid model (figure 4(b)), with splitting 
of the second neighbour peak, characteristic for long-range ordering. 

The values of the saturation temperatures depend on the assumed screening length, 



5288 P Sobkowicz et a1 

Figure 4. Comparison of pair correlation functions for the random impurily and pseudo- 
liquid models of the ZD system at exupation fraction f = 0.2, and T i): 0. (a) g(R) fa 
the random impurity model. (b) g(R) for the pseudo-liquid model. (c) Example of spatial 
charge distribution for the random impurity model inside a lWA x l m h  square. (Most of 
charged impurities contained in the simulated system are not shown in the figure). (4 Example 
of spatial charge dblribution for the pseudo-liquid model inside a l O O O A  x lOCOA square. 
(Most of the charged impurities mntained in the simulated system are not shown in the figure.) 
Long-range orienlarional ordering. clearly visible in the pseudo-liquid model (where the charges 
may assume arbitmy positions during the simulations) is absent in the random impurity model. 
in which charges are restricted to a randomly disaibuted set of sites. T k  splitting of ule second 
peak in the g ( R )  for the pseudo-liquid model is one of the characteristic features of glass 
formation [141. 

diminishing with decreasing A. However, in the random impurity system, at T = 0, the 
shape of g ( R )  and the gmar value do not change over a wide range of A values, from A 
much smaller than the mean separation between the charges (see figure 5) .  Only for very 
small values of A have we observed a change in g(R). This deviation requires further study, 
the results of which will be published elsewhere. 

The imporiance of the pair correlation function results from the fact that g ( R )  is directly 
related to the structure factor S(q) ,  determining the scattering rate from ionized impurity 
scattering. Enhancement of correlations with decreasing temperature leads to an increase 
of electron mobility. Thus, the saturation of the ordering, expressed by freezing of g ( R )  
below Ts(f) leads to a halt of the increase of the mobility with decreasing T. Possibly 
this fact is related to a saturation of mobility in HgSe:Fe at low temperatures observed by 
Lenard and co-workers 130,311 and Pool and co-workers [28,291. 

3.2. Den& ofsrates 

The pair correlation function gives a rather limited view of the ordering phenomena- 
there exist higher-order correlation functions which contain more information. Still another 
method of quantification of the amount of disorder in a system is through a study of 
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the energy distribution, given by the density of states (DOS). This quantity, frequently 
used in the physics of semiconductors, is seldom used in studies of liquids and colloids, 
although it offers interesting insights into many phenomena. The single-particle Ws allows 
a description of the mean value and fluctuations of the energy of particles. 

Computer simulations offer a simple and direct way of describing the energy distribution 
in the simulated system. One can simply record values of the electrostatic potential at lattice 
sites, due to all charges except the one located at the given site. In the case of a charged 
site this corresponds simply to the electrostatic energy of the charge. In the case of a 
neutral site, this gives the energy of a test charge located on the site. In this sense one can 
speak of energies of charged and empty sites. The above approach can be extended to the 
pseudo-liquid model, only the energy distribution of neutral sites is replaced by continuum 
of energies of test charges at all unoccupied points in space. In our work we will study the 
dispersion of site energies and relation of energies of charged and neutral sites. A typical 
example of the energy distribution of various species of impurity site is presented in figure. 6. 
which shows all important aspects of the density of states of the systems under study here.. 

3.2.1. Broadening of the density of states. As can be seen in figure 6 the distribution 
of energies of charged sites has a roughly Gaussian shape, becoming asymmetrical with 
an increasing temperature. Further examples of Dos are presented in figures 7 and 8. 
In this section we shall concentrate on the second moment of the energy distribution of 
charged sites, oz(f, T) = (E -E(f , )2 ,  where the bar denotes averaging with respect to 
energy. Figures 9 and 10 present the behaviour of uz( f, T) for various occupation fractions 
and temperatures, for the ZD and 3D case, respectively. Results for the random impurity 
model (filled symbols) show a similar type of behaviour as the pair correlation function: 
with decreasing temperature, u2 at first decreases and then saturates below temperatures 
approximately equal to the values of T s ( f )  obtained from the study of pair correlation 
functions. One can also observe that here, as in the analysis of g,=(T), the saturation 
temperatures are easier to define in the 2D systems. In the pseudo-liquid model there is no 
saturation, except at extremely low temperatures when, in some cases, a transition to the 
glass phase has been observed. Instead, the dispersion u2 decreases approximately linearly 
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Figure 6. Comparison of density of states for a 20 random impurity 
and pseudo-liquid systems. Light gray m Dos ofcharged sites in 
the random impurity system. Dark gray m Dos of charged si- 
for the pseudo-liquid modeL Full curve: DOS of neutral sites in 
the random impurity model; doned curve: ws for the continuum 
of neutral sites for the pseudo-liquid model. The thick full c w e  
repmenu the perfect crystalline arrangement of charges. The ms 
of neueal sites for the pseudo-liquid model and crystal (which are 
not properly normalized) are scaled to become comparable with 
the random impurity model. Ewfi is the energy of lanice sites in 
a crjsralline array with the same charge density, EhladclW is the 
value of the Madelung gap m the cqstal. One can note that at low 
t e m p e m  the shape of the ws for the random impurity model 
does not change, whereas in the pseudo-liquid model a finite region 
of energies with DOS = 0 develops. At higher t e m p e r a m  bolh 
models give similar results. 

I Minimal ualuedD0S I 
Minimal value of D[ 

Figure 7. Total density of states (summed ws of 
charged and neulral Sites) for fhe 30 random impurity 
model. 'Ihe small but non-zero value at 7 w 0 is due to 
averaging between different realizations of the system. 
The inset shows the dependence of the minimal value of 
the DOS at the centre of the Coulomb gap as a function 
of temperature. Occupation fraction f = 0.2 

with decreasing temperature (open symbols in figures 9 and IO). 

a simple empirical formula to the results of the random impurity model: 

Figure 8. The same as figure 1. but for a ZD random 
impurity model with f = 0.2. 

To analyse the temperature dependence of u2 in a more quantitative way we have fined 

u2(f, n = .o'(f)JT2 + To'(f) (2) 

interpreting T o ( f )  as a thermal measure of the effects due to positional disorder. Taking 
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W i r e  9. Second moment of the energy d i e  
hibution for 20 systems of various occupa- 
tion tiactions as a function of temperature. 
Diamonds: f = 0.4: squares: f = 0.3; 
circles: f = 0.2 Filled symbols: random 
impurity model; open symbols: equivalent 
pseudo-liquid model. The inset shows the 
details at low temperatures. The full CUNS 

are the results of the fit a2 = a i m  
U, the random impurity MC simulations n- 
sults. Dotted cwes, coinciding very well 
the results of the pseudo-liquid model. COI- 
respond M the linear function b2 = biT 
with the same bo as in the corresponding 
random impurity models. The inset shows 
the details in the low-temperature region. 
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Figure 10. The same as in figure 9, but 
0 5 10 15 20 25 30 35 40 45 for 3D systems. Squares: f = 0.3; circles: 

T [KI f = 0.2. 

into account numerical errors, the above formula describes remarkably well the results of 
MC simulations in both 2D and 3D cases (the full curves in figures 9 and IO). Comparing the 
values of To( f) with the corresponding approximate saturation temperatures T s ( f )  obtained 
from the study of g,, show that both quantities are indeed closely related: see table 1. 

Table 1. Comparison of To( f) and Ts( f ) .  

zn case 30 Case 

f 0.2 0.3 0.4 0.2 0.3 
T s ( f )  7 ; t Z  16f3 2 7 * 5  4 + 2  S i 3  
T O W  8.6 17.0 30.2 5.2 7.8 
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The above interpretation of To(f) is in accord with the analysis of the results found 
for the pseudo-liquid system: using the values of ul( f) derived from the random impurity 
model, and putting To(f) = 0 we have obtained simple linear functions u2(f, T )  = &f)T 
(the broken curves in figures 9 and IO). It may be seen that this simple approach provides 
a good description of the properties of the pseudo-liquid system in all cases studied (open 
symbols in figures 9 and IO). This allows us to describe positional disorder using thermal 
measures, for example, introducing an effective temperature T’ = J-. In other 
words, TO itself is a measure of the positional disorder alone. 

The possibility of expressing at least some of the effects of positional disorder in a 
random impurity model is especially important in the light of recent attempts to describe 
temperature and doping concentration dependence of mobility in HgSe doped with iron using 
a formalism from liquid state theory I32.331. As indicated by our work, direct application 
of liquid-like models seems to be an oversimplification. especially at low temperatures. 
However, using the effective temperature T* could lead to a more realistic description of 
the system. 

Let us note here that the positional disorder in the sense used in this work is completely 
different from the ‘internal disorder’, i.e. the scatter of the impurity site energies introduced. 
for instance, in [2]. In our models the energies of the impurities without interactions are all 
the same. 

3.2.2. A gap in the density of states. A comparison of the distribution of potential energies 
of charged and neutral sites such as presented in figure 6 reveals another striking feature 
due to interaction between charges: the so-called Coulomb gap [2-4,22,23,34]. The name 
describes a pronounced drop in the total one-particle DOS (i.e. the summed DOS of neutral 
and charged sites) found at low temperatures, separating the energies of charged and neutral 
sites (figures 68). The Coulomb gap has been initially found in numerical studies of 
highly doped semiconductors with internal disorder [2,22,23]. Recently, Efros [4] studied 
the formation and temperature dependence of the Coulomb gap in a system of point charges 
without external disorder (corresponding to our pseudo-liquid model with Coulomb instead 
of Yukawa interactions). 

In this work we propose a unifying picture describing the behaviour of the DOS in a 
system of point charges, valid for a whole range of systems, starting from perfect crystals 
and ending with a totally random distribution of charges. We argue that the formation of a 
gap in the density of states, separating energies of charged and neutral sites, is due to the 
presence of spatial ordering imposed by electmstatic repulsion of the charges and that it 
appears even for relatively short-range potentials (with the screening length of the order of 
the inter-impurity separations. 

Let us Consider first a perfect lattice of charges. All of them have the same energy, 
E,,,,, thus the DOS of the charged sites is a Dm delta function. On the other hand, a test 
charge located at any point except for the lattice sites has a higher potential energy. In fact, 
there is a finite difference between the energy of lattice (charged) sites and the lowest energy 
of non-lattice (neutral) sites. This difference may be named the Madelung gap, E ~ ~ h l ~ ~  
(see figure 6(4)). 

An increase of the temperature broadens the energy distribution of both charged and 
neutral sites. The broadening is due to the movement of the position of the charges amund 
the lattice sites and to the formation of defects. The uppennost panel in figure 6 presents the 
DOS of a supercooled ZD liquid (the dark gray area represents charged sites, the broken curve 
the continuum of neutral sites). Although the energy distributions are broadened, there is 
still a well defined region of energies where the DOS is equal to zero. For comparison, the 
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DOS of the random impurity system is also shown. 
A further increase of temperature gradually closes the finite gap in the density of states 

for the pseudo-liquid model, and leads to a situation such as is presented in the middle panel 
of figure 6. The DOS of the pseudo-liquid and the random impurity models become very 
similar. The exact shape of the DOS depends not only on the dimensionality of the system, 
as previously suggested, but also to the amount of disorder present. The process of gap- 
filling continues with increasing temperature until finally, at sufficiently high temperatures, 
the gap in the DOS disappears. Figures 7 and 8 present the detailed temperature dependence 
of the DOS shape for a 2D and 3D random impurity system with f = 0.3. The insets show 
that the temperature dependence of the minimal value of the DOS also shows a change in 
behaviour at temperatures close to T s ( f )  or To(f) .  A small but finite value of the DOS at 
the minimum for T = 0 is a result of averaging between various numerical realizations of 
the systems, smearing the Fermi energy. For a system with ‘positional disorder’, having a 
filling fraction f % 0.5 and at very low temperature, we expect a’ to be of the order of the 
Coulomb gap width since both quantities scale approximately with the interaction energy 
characteristic for the first coordination distance. On the other hand, for f approaching zero 
the dispersion a2 drops while Coulomb gap becomes more pronounced. 

We think that it is important to point out the close connection between the existence 
and shape of the Coulomb gap in the density of states with the degree of spatial ordering 
in the system. The ordering, in turn, is due to the repulsion between charges. The presence 
of the built-in disorder, as in the random impurity system, may stop the transition from the 
traditional Coulomb to Madelung gap at a certain point. The resulting shape of the DOS at 
T x 0 thus depends, for example, on the ratio of the number of charges to the number of 
available sites. . 

4. Conclusions 

We have studied a system of charges located on a random array of sites and interacting 
through a Yukawa potential. In this system the spatial ordering of charges is blocked at 
low temperatures by the presence of built-in underlying positional disorder. The ordering 
process is described with the help of several physical quantities: pair correlation functions, 
fluctuations of individual site energy, Coulomb gap formation in the density of states. 
All studied examples, both two- and three-dimensional, show saturation of correlations 
below a certain temperature. The value of the saturation temperature depends on the 
occupation fraction, f, defined as the ratio of the charged-sites density to the total-site 
density, screening length and dimensionality, although not very sensitively on the latter 
two. Lack of sensitivity to the screening length (determined mainly by the conduction 
electron density) can be understood, remembering that for a spatially correlated impurity 
system the important contribution to effective screening of the impurity potentials comes 
from self-screening within the impurity system. A comparison of the results of the random 
impurity model with a pseudo-liquid model (corresponding to the limiting case of f + 0 
with constant charge density and screening length) allows us to emphasize the role of an 
interplay between thermal disorder and positional disorder due to initial random distribution 
of available sites. It has been possible to introduce an ‘empirical’ temperature TO, describing 
the effects of positional disorder. TO roughly corresponds to temperatures below which there 
is no further ordering with decreasing temperature. 
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